Skip to main content
Ingenium Logo

You are leaving IngeniumCanada.org

✖


This link leads to an external website that Ingenium does not control. Please read the third-party’s privacy policies before entering personal information or conducting a transaction on their site.

Have questions? Review our Privacy Statement

Vous quittez IngeniumCanada.org

✖


Ce lien mène à un site Web externe qu'Ingenium ne contrôle pas. Veuillez lire les politiques de confidentialité des tiers avant de partager des renseignements personnels ou d'effectuer une transaction sur leur site.

Questions? Consultez notre Énoncé de confidentialité

Ingenium The Channel

Langue

  • Français
Search Toggle

Menu des liens rapides

  • Ingenium Locations
  • Shop
  • Donate
  • Join
Menu

Main Navigation

  • Browse
    • Categories
    • Media Types
    • Boards
    • Featured Stories
  • About
    • About The Channel
    • Content Partners

Unveiling the Turbulent Times of a Dying Star

This article was originally written and submitted as part of a Canada 150 Project, the Innovation Storybook, to crowdsource stories of Canadian innovation with partners across Canada. The content has since been migrated to Ingenium’s Channel, a digital hub featuring curated content related to science, technology and innovation.

Share
Nov 22, 2016
Categories
Sciences
Media
Article
Profile picture for user Perimeter Institute
By: Perimeter Institute
Dying star

Running sophisticated simulations on a powerful supercomputer, an international research team has glimpsed the unique turbulence that fuels stellar explosions.

All the stars in the sky will eventually die – and some will really go out with a bang.

When a dying star goes supernova, it explodes with such ferocity that it outshines the entire galaxy in which it lived, spewing material and energy across unimaginable distances at near-light speed.

In some cases, these cosmic cataclysms defy expectations, blasting not symmetrically in all directions – as an exploding firework might – but instead launching two narrow beams, known as jets, in opposite directions.

Understanding how these jets are created is a vexing challenge, but an international research team has recently employed powerful computer simulations to sleuth out some answers.

The team – led by Philipp Mösta (NASA Einstein Fellow at UC Berkeley), with Caltech researchers Christian Ott, David Radice and Luke Roberts, Perimeter Institute computational scientist Erik Schnetter, and Roland Haas of the Max-Planck Institute for Gravitational Physics – published their findings Nov. 30 in Nature.

Their work sheds light on an explosive chain reaction that creates jets and, over time, helps create the structure of the universe as we know it.

“We were looking for the basic mechanism, the core engine, behind how a collapsing star could lead to the formation of jets,” said Schnetter, who designed computer programs for the simulations employed by the research team to model dying stars.

That core engine, the team discovered, is a highly turbulent place. Any turbulent system – like an aging car with a deteriorating suspension on a bumpy road – is bound to get progressively more chaotic. In certain types of supernovae, that turbulence is caused by what is known as magnetorotational instability – a type of rapid change within the magnetic field of a spinning system, like some stars.

Prior to the work of Schnetter and colleagues, this instability was believed to be a possible driver of jet-formation in supernovae, but the evidence to support that belief was scant.

Uncovering such evidence, Schnetter says, required a something of a scientific perfect storm.

“You need to have the right people, with the right expertise and the right chemistry between them, you need to have the right understanding of physics and mathematics and computer science, and in the end you need the computer hardware that can actually run the experiment.”

They assembled the right people and found the computational horsepower they needed at the University of Urbana-Champaign in Illinois.

The team used Blue Waters, one of the world’s most powerful supercomputers, to run simulations of supernovae explosions – simulations so complex that no typical computer could handle the number-crunching required. On Blue Waters, the simulations provided an unprecedented glimpse into the extreme magnetic forces at play in stellar explosions.

The 3D simulations revealed an inverse cascade of magnetic energy in the core of spinning stars, which builds up with enough intensity to launch jets from the stellar poles.

Though the simulations do not take into account every chaotic variable inside a real supernova, they achieve a new level of understanding that will drive follow-up research with more specialized simulations.

Deepening our understanding of supernova explosions is an ongoing process, Schnetter says, and one that may help us better understand the origins of – to borrow a phrase from Douglas Adams – life, the universe, and everything.

The formation of galaxies, stars, and even life itself are fundamentally connected to energy and matter blasted outward in exploding stars. Even our own Sun, which supports all life on our planet, is known to be the descendent of earlier supernovae.

So the study of stellar explosions is, Schnetter says, deeply connected to some of the most fundamental questions humans can ask about the universe. A nice bonus, he adds, is that supernovae are also really awesome explosions.

“These are some of the most powerful events in the universe,” he says. “Who wouldn’t want to know more about that?”

Transcript

Supercomputer visualization of the toroidal magnetic field in a collapsed, massive star, showing how in a span of 10 milliseconds the rapid differential rotation revs up the stars magnetic field to a million billion times that of our sun (yellow is positive, light blue is negative). Red and blue represent weaker positive and negative magnetic fields, respectively. Simulations and visualization by Philipp Mösta.

Tags
Innovation Storybook
Author(s)
Profile picture for user Perimeter Institute
Perimeter Institute
Follow

Perimeter Institute is a leading centre for scientific research, training and educational outreach in foundational theoretical physics. Founded in 1999 in Waterloo, Ontario, Canada, its mission is to advance our understanding of the universe at the most fundamental level, stimulating the breakthroughs that could transform our future. Perimeter also trains the next generation of physicists through innovative programs, and shares the excitement and wonder of science with students, teachers and the general public.

https://www.perimeterinstitute.ca/

More Stories by

Profile picture for user Perimeter Institute
Perimeter Institute
General Relativity

Testing General Relativity with Black Holes

Related Stories

A red plastic telephone with the handset off of the base on a light grey table. There are scratches on the phone which is an angular design. The rotary dial is on the handset and attached to the base by a red spiral cord.

A Phone Call from Below the Arctic Ice - The 50th Anniversary of Arctic III Sub-Igloo Phone Call to Prime Minister Pierre Elliott Trudeau

Spliced image, from left to right: a seismometer on mars, a heap of red rhubarb stalks with green leaves, a copper roof of the Canaian Parliament

3 Things you should know about marsquakes, the value of urine, and the chemistry of rhubarb

A dirty glass slide of a stromatolite with a dirty cotton swab at the bottom; a close-up on a bee with a green head and thorax on a yellow flower; a false colour 3D view of the surface of Venus showing volcanoes and lava flowing towards the foreground.

3 Things you should know about how native bees are important pollinators, how saliva is used to clean artifacts, and active volcanism on Venus

A spliced photo, from left to right: Shaun the Sheep in front of a model of ESA’s European Service Module, a top view into a red bucket containing thousands of light-brown, rod-shaped pellets, and a toddler wearing a wool hat and wool sweater holds a grownup’s finger.

3 things you should know about why wool keeps us warm, and about its surprising uses in the garden and in space.

A large impact crater viewed from the rim, a woodern spoon full of small yellow grains, a close up of a forearm being tattooed.

3 things you should know about the untapped potential of millet, the permanence of tattoos, and asteroid airbursts

Three images side by side: a toilet bowl expelling a cloud of droplets, a gloved hand holding a test tube containing a small plant, and an infrared view of Jupiter's volcanic moon Io showing spots of volcanic activity covering the moon.

3 things you should know about flushing the toilet, artificial photosynthesis, and volcanic activity on Jupiter's moon

Headshots of 33 women, showing the diversity of women in AI and Robotics

Women in AI & Robotics: An interview with Founder and CEO, Sheila Beladinejad

A rear view of a person wearing a yellow coat and backpack in winter, a close-up view of bright red poinsettias with small yellow central flowers.

Two things you should know about the science of wind chill, and the Orion spacecraft's selfies.

A woman examining a bottle of olive oil in a grocery store, Gravel terrain in beige with boulders identified in pink, craters in purple, and crater rims in turquoise, A close up of the tread of a winter tire showing deep, wide, jagged grooves and wavy sipes.

3 things you should know about food fraud, how winter tires work and Canadian artificial intelligence headed for the Moon.

Three images side by side: A little girl smells a sunflower, the DART spacecraft’s impact into the asteroid Dimorphos, and a candy apple

3 things you should know about how the DART spacecraft changed the orbit of an asteroid, how we have more than five senses, and how the science of caramel can make you a better cook!

Designed image showing stars representing children who never made it home from residential schools, an eagle representing First Nations, a narwhal representing Inuit, a beaded flower representing Métis peoples, a winding white pathway representing the Road to Reconciliation, and a circle representing being together in a spirit of reconciliation.

Canada’s Federal Interdepartmental Indigenous STEM Cluster – A Force for Cooperation, Empowerment, and Reconciliation

A spliced, three-part image features: a view of the Apollo 11 ascent module flying above the grey Moon on the left, honeybees on a honeycomb in the centre, and a hand holding a fanned-out deck of cards.

3 things you should know about how mathematics is used for space exploration, how honeybees are masters of geometry, and the uniqueness of a shuffled deck of cards.

Footer

About The Channel

The Channel

Contact Us

Ingenium
P.O. Box 9724, Station T
Ottawa ON K1G 5A3
Canada

613-991-3044
1-866-442-4416
contact@IngeniumCanada.org
  • Facebook
  • Instagram
  • Twitter
  • Channel

    • Channel Home
    • About the Channel
    • Content Partners
  • Visit

    • Online Resources for Science at Home
    • Canada Agriculture and Food Museum
    • Canada Aviation and Space Museum
    • Canada Science and Technology Museum
    • Ingenium Centre
  • Ingenium

    • Ingenium Home
    • About Ingenium
    • The Foundation
  • For Media

    • Newsroom
    • Awards

Connect with us

Subscribe to our newsletter to receive the latest Ingenium news straight to your inbox!

Sign Up

Legal Bits

Ingenium Privacy Statement

© 2023 Ingenium

Symbol of the Government of Canada
  • Browse
    • Categories
    • Media Types
    • Boards
    • Featured Stories
  • About
    • About The Channel
    • Content Partners