Skip to main content
Ingenium Logo

You are leaving IngeniumCanada.org

✖


This link leads to an external website that Ingenium does not control. Please read the third-party’s privacy policies before entering personal information or conducting a transaction on their site.

Have questions? Review our Privacy Statement

Vous quittez IngeniumCanada.org

✖


Ce lien mène à un site Web externe qu'Ingenium ne contrôle pas. Veuillez lire les politiques de confidentialité des tiers avant de partager des renseignements personnels ou d'effectuer une transaction sur leur site.

Questions? Consultez notre Énoncé de confidentialité

Ingenium The Channel

Langue

  • Français
Search Toggle

Menu des liens rapides

  • Ingenium Locations
  • Shop
  • Donate
  • Join
Menu

Main Navigation

  • Browse
    • Categories
    • Media Types
    • Boards
    • Featured Stories
  • About
    • About The Channel
    • Content Partners

Perimeter cosmologists propose new form of “dynamical” crystals

This article was originally written and submitted as part of a Canada 150 Project, the Innovation Storybook, to crowdsource stories of Canadian innovation with partners across Canada. The content has since been migrated to Ingenium’s Channel, a digital hub featuring curated content related to science, technology and innovation.

Share
Nov 22, 2016
Categories
Sciences
Media
Article
Profile picture for user Perimeter Institute
By: Perimeter Institute
“dynamical” crystals

Latham Boyle wanted to enhance a proposed gravitational wave detector. Instead, he and Kendrick Smith may have stumbled upon a new type of crystal.

A crystal is a crystal, right? Diamond, quartz, graphene, and the like are lattices made up of a symmetric, repeating arrangement of atoms. Any way you look at it, a crystal’s innards are arranged in a predictable pattern.

But what if there was another type of crystal, one that exhibited its crystalline nature not in it is structure, but in its movements?

Such a crystal would only reveal its symmetry through the motion of its particles. If you were to take a photograph of its internal workings, it would look asymmetrical. But if you were to watch a movie of it, a choreographed dance of its particles would emerge over time. It would have a dynamic sort of symmetry.

The idea for this new type of crystal came to Perimeter Institute Faculty member and cosmologist Latham Boyle when he was puzzling over ways to detect gravitational waves.

In a recent paper (UPDATE: this paper was published in Physical Review Letters in January 2016, and is also available on the arXiv), Boyle and co-authors explain the concept. He posits that these “dynamical crystals” might already exist in nature, or could be engineered in a lab. Either way, he suspects they are bound to be good for something, so the paper also describes a general method to construct such crystals mathematically, as well as an experimental way to find them and figure out their structure.

This is admittedly unusual territory for a cosmologist, but Boyle says he got there honestly, via a circuitous route that started in the depths of the universe.

Boyle was pondering plans for the Laser Interferometer Space Antenna (LISA), a proposed gravitational wave telescope in which three satellites would trail the Earth in its orbit, transmitting laser beams to each other in a triangle. If a gravitational wave passes through and disrupts the system, the satellites would detect it.

Such an experiment could determine something about where a gravitational wave had come from, and its polarization state. But Boyle suspected that adding a fourth satellite – and choosing an appropriate four-satellite orbit – would glean much richer and more complete information.

It was an interesting idea, but one without much chance of near-term impact. Still, Boyle was curious, so he did what physicists do: he boiled the idea down to its simplest case and tried to work out a symmetrical four-satellite orbit.

He couldn’t do it. There was just no way to make a symmetrical four-satellite system. But then, over Christmas 2012, he started fiddling with the idea again, this time from a new perspective.

Instead of looking at dynamic objects, like orbiting satellites, and trying to force them to have a static sort of symmetry, why not find a symmetry that suits them? Why not look for dynamic symmetry?

“It turns out there’s this really, really symmetric orbit for four satellites,” he says, drawing diagrams on the wall-sized chalkboard in his office at Perimeter Institute. “The surprising thing is that it’s even more symmetrical than the regular tetrahedron, which is the first of the Platonic solids and is the most symmetrical static arrangement of four points.”

If you reflect an ordinary (static) crystal through a certain plane, or rotate it by a certain amount, it still looks the same. But the symmetries of the four-satellite orbit mix space and time. To go back to the movie analogy, after a certain rotation, it might look as though the film has been fast-forwarded by a certain amount.

Excited by the idea, Boyle got chatting to Kendrick Smith, a cosmologist who was visiting Perimeter at the time and has since joined the faculty.

“We both are cosmologists, so it was natural for us to be talking. But this is not really cosmology and I was just sort of telling him about it because I was excited about it,” Boyle says.

“I’d just found this thing that was the dynamical analog of the tetrahedron. I was wondering: maybe there are orbits that are dynamical analogs to all the Platonic solids.”

But Boyle wasn’t sure how to proceed. Smith listened, and then finished his visit to Perimeter. A week later, an email arrived in Boyle’s inbox. Smith had developed an ingenious way to find all of the analogs of the symmetric satellite configurations.

“With him, it wasn’t just excitement,” Boyle says. “He’s also very gifted and had solved the problem straight up.”

Smith’s solution finds all possible symmetric satellite orbits, no matter how many satellites they have and no matter what symmetry they have. The pair describes these as symmetric satellite swarms.

The more general concept of ‘choreographic order’ might be of interest in a range of contexts: from designing satellite systems in outer space, to understanding the microscopic arrangement of certain many-body systems in the lab, and even in pure mathematics, where Boyle says lattices and crystals are “ubiquitous.”

Choreographic crystals might even exist in nature. We could have just missed them because they would modify Bragg’s diffraction laws (which stipulate that a beam diffracted through a crystal has the same frequency before and after diffraction) in a subtle way.

In particular, Boyle and Smith have shown that if a choreographic crystal were subjected to a diffraction experiment, both the frequencies and positions of the diffraction peaks are shifted and split in a specific way. By measuring these shifts and splittings, one could infer not just the spatial arrangement of the atoms, but how they are moving as well.

“That’s the key experimental prediction. There could be this other type of crystal out there, which we think people might have missed because it’s much less intuitive,” Boyle says.

“I don’t know if these things will be out there in nature or not, but it makes sense to look for them. There is this very clear-cut signal to look for.”

– Tenille Bonoguore

Tags
Innovation Storybook
Author(s)
Profile picture for user Perimeter Institute
Perimeter Institute
Follow

Perimeter Institute is a leading centre for scientific research, training and educational outreach in foundational theoretical physics. Founded in 1999 in Waterloo, Ontario, Canada, its mission is to advance our understanding of the universe at the most fundamental level, stimulating the breakthroughs that could transform our future. Perimeter also trains the next generation of physicists through innovative programs, and shares the excitement and wonder of science with students, teachers and the general public.

https://www.perimeterinstitute.ca/

More Stories by

Profile picture for user Perimeter Institute
Perimeter Institute
General Relativity

Testing General Relativity with Black Holes

Related Stories

Two images spliced: On the left, different plant-based milk alternatives, on the right, an overhead view of the Spirit rover.

2 things - and more! - you should know about plant-based milk alternatives and weather on Mars

Black and white horizontal photograph of man wearing glasses who is laying on his side on the ground feeding a small squirrel by hand.

Reading Expedition Photographs in the Frank T. Davies Fonds

A red plastic telephone with the handset off of the base on a light grey table. There are scratches on the phone which is an angular design. The rotary dial is on the handset and attached to the base by a red spiral cord.

A Phone Call from Below the Arctic Ice - The 50th Anniversary of Arctic III Sub-Igloo Phone Call to Prime Minister Pierre Elliott Trudeau

Spliced image, from left to right: a seismometer on mars, a heap of red rhubarb stalks with green leaves, a copper roof of the Canaian Parliament

3 Things you should know about marsquakes, the value of urine, and the chemistry of rhubarb

A dirty glass slide of a stromatolite with a dirty cotton swab at the bottom; a close-up on a bee with a green head and thorax on a yellow flower; a false colour 3D view of the surface of Venus showing volcanoes and lava flowing towards the foreground.

3 Things you should know about how native bees are important pollinators, how saliva is used to clean artifacts, and active volcanism on Venus

A spliced photo, from left to right: Shaun the Sheep in front of a model of ESA’s European Service Module, a top view into a red bucket containing thousands of light-brown, rod-shaped pellets, and a toddler wearing a wool hat and wool sweater holds a grownup’s finger.

3 things you should know about why wool keeps us warm, and about its surprising uses in the garden and in space.

A large impact crater viewed from the rim, a woodern spoon full of small yellow grains, a close up of a forearm being tattooed.

3 things you should know about the untapped potential of millet, the permanence of tattoos, and asteroid airbursts

Three images side by side: a toilet bowl expelling a cloud of droplets, a gloved hand holding a test tube containing a small plant, and an infrared view of Jupiter's volcanic moon Io showing spots of volcanic activity covering the moon.

3 things you should know about flushing the toilet, artificial photosynthesis, and volcanic activity on Jupiter's moon

Headshots of 33 women, showing the diversity of women in AI and Robotics

Women in AI & Robotics: An interview with Founder and CEO, Sheila Beladinejad

A rear view of a person wearing a yellow coat and backpack in winter, a close-up view of bright red poinsettias with small yellow central flowers.

Two things you should know about the science of wind chill, and the Orion spacecraft's selfies.

A woman examining a bottle of olive oil in a grocery store, Gravel terrain in beige with boulders identified in pink, craters in purple, and crater rims in turquoise, A close up of the tread of a winter tire showing deep, wide, jagged grooves and wavy sipes.

3 things you should know about food fraud, how winter tires work and Canadian artificial intelligence headed for the Moon.

Three images side by side: A little girl smells a sunflower, the DART spacecraft’s impact into the asteroid Dimorphos, and a candy apple

3 things you should know about how the DART spacecraft changed the orbit of an asteroid, how we have more than five senses, and how the science of caramel can make you a better cook!

Footer

About The Channel

The Channel

Contact Us

Ingenium
P.O. Box 9724, Station T
Ottawa ON K1G 5A3
Canada

613-991-3044
1-866-442-4416
contact@IngeniumCanada.org
  • Facebook
  • Instagram
  • Twitter
  • Channel

    • Channel Home
    • About the Channel
    • Content Partners
  • Visit

    • Online Resources for Science at Home
    • Canada Agriculture and Food Museum
    • Canada Aviation and Space Museum
    • Canada Science and Technology Museum
    • Ingenium Centre
  • Ingenium

    • Ingenium Home
    • About Ingenium
    • The Foundation
  • For Media

    • Newsroom
    • Awards

Connect with us

Subscribe to our newsletter to receive the latest Ingenium news straight to your inbox!

Sign Up

Legal Bits

Ingenium Privacy Statement

© 2023 Ingenium

Symbol of the Government of Canada
  • Browse
    • Categories
    • Media Types
    • Boards
    • Featured Stories
  • About
    • About The Channel
    • Content Partners