Skip to main content
Ingenium Logo

You are leaving IngeniumCanada.org

✖


This link leads to an external website that Ingenium does not control. Please read the third-party’s privacy policies before entering personal information or conducting a transaction on their site.

Have questions? Review our Privacy Statement

Vous quittez IngeniumCanada.org

✖


Ce lien mène à un site Web externe qu'Ingenium ne contrôle pas. Veuillez lire les politiques de confidentialité des tiers avant de partager des renseignements personnels ou d'effectuer une transaction sur leur site.

Questions? Consultez notre Énoncé de confidentialité

Ingenium The Channel

Langue

  • Français
Search Toggle

Menu des liens rapides

  • Ingenium Locations
  • Shop
  • Donate
  • Join
Menu

Main Navigation

  • Browse
    • Categories
    • Media Types
    • Boards
    • Featured Stories
  • About
    • About The Channel
    • Content Partners

Meet Canada's Blood-Typing Pioneers

This article was originally written and submitted as part of a Canada 150 Project, the Innovation Storybook, to crowdsource stories of Canadian innovation with partners across Canada. The content has since been migrated to Ingenium’s Channel, a digital hub featuring curated content related to science, technology and innovation.

Share
Jul 6, 2017
Categories
Medicine
Media
Article
Profile picture for user Canadian Blood Services
By: Canadian Blood Services
Blood-Typing vials

Blood-typing pioneers

Canada’s blood transfusion service and the patients who benefit from it owe a great deal to pioneering innovation in the field of blood typing. Work by immunohematologists Marie Crookston at the University of Toronto and Dr. Bruce Chown, Dr. Jack Bowman and team at the Winnipeg Rh Laboratory in the mid-twentieth century advanced clinical knowledge of transfusion reactions due to blood cell antibody responses. Their studies made the transfusion service aware of these potentially life-threatening reactions and gave clinicians new treatments. Furthermore, results like these from the broader field of blood typing also paved the way for current research looking at camouflaging blood cells and making artificial universal donor blood.

Dr. Bruce Chown and the Winnipeg Rh Laboratory

Dr. Bruce Chown graduated from the University of Manitoba medical school in 1922. He spent three years in pediatric research in the United States before returning to the Children’s Hospital in Winnipeg. In 1940, his research interests turned to human blood groups in general, and newborn and infant conditions in particular.

Rhesus Factor

At the time, Rhesus (Rh) factor on the surface of red blood cells and the Rh factor system were not fully understood. Although Rh factor was discovered by Karl Landsteiner in 1937, its importance became apparent only through follow-up work in 1940. A paper on hemolytic disease of newborn babies showed that this newly discovered blood type caused neonatal deaths and severe transfusion reactions.

Rh factor is a blood group antigen, a protein that spans across the red cell membrane to the outside of the cell. Humans either do or do not possess these markers, hence the blood-typing classifications Rh+ or Rh−. There are several different Rh antigens, but the most common one referred to is termed D. Normally the Rh system does not cause a problem unless an Rh− individual is sensitized and carries anti-Rh antibodies. This is rare, but sensitization can happen during pregnancy and with blood transfusion. Sensitized individuals will therefore destroy any Rh+ red blood cells they encounter.

… Read the full story

Dr. Mark Scott at the Centre for Blood Research

Dr. Mark Scott, a senior investigator with the Canadian Blood Services and the Centre for Blood Research at the University of British Columbia (UBC) is pinning camouflage to red blood cells to help them avoid a patient’s immune system. The camouflage molecule, known as PEG, sits on the cell surface and blocks antibody attack, thus protecting the donor cells from destruction. Another approach is to snip the red cell antigens from the cell membrane. UBC associate professor Dr. Jayachandran Kizhakkedathu and team have developed an enzyme that does just that, making artificial O− blood for transfusion.

Research like this may make it possible for blood banks and transfusion services to respond quickly to patient needs in the future, serving disaster medicine where large volumes are required almost instantly, and providing safe products for patients with rare blood groups. Without pioneering basic research into blood type characterization from immunohematologists like Crookston and Chown, the idea of an artificial universal donor blood would be impossible.

Read the full story

This post, along with others in our Innovation150 series, was prepared by Amanda Maxwell, for Canadian Blood Services, with grateful thanks to Dr. Jacalyn Duffin, Queen’s University, Kingston, Ontario, for additional insights and materials.

Tags
Innovation Storybook
Author(s)
Profile picture for user Canadian Blood Services
Canadian Blood Services

Canadian Blood Services is a not-for-profit charitable organization that operates independently from government. Created through a memorandum of understanding between the federal, provincial and territorial governments, we opened our doors in 1998. Our funding comes primarily from provincial and territorial governments.   

https://blood.ca/

Related Stories

A large impact crater viewed from the rim, a woodern spoon full of small yellow grains, a close up of a forearm being tattooed.

3 things you should know about the untapped potential of millet, the permanence of tattoos, and asteroid airbursts

The 3.75- / 3.5-inch flight impact simulator of the National Research Council of Canada at some point during its long career, Uplands / Ottawa, Ontario. NRC.

A great Canadian success story you should know about: A brief look at the National Research Council of Canada flight impact simulators donated to the Canada Aviation and Space Museum, Part 2

Three images side by side: A little girl smells a sunflower, the DART spacecraft’s impact into the asteroid Dimorphos, and a candy apple

3 things you should know about how the DART spacecraft changed the orbit of an asteroid, how we have more than five senses, and how the science of caramel can make you a better cook!

Three images side by side, plastic-wrapped cucumbers, a woman with an inflamed shoulder, and the James Webb Space Telescope.

3 things you should know about plastic-wrapped cucumbers, the James Webb telescope, and inflammation

A small, open box containing several small metal puncturing tools, used to administer smallpox vaccine by scratching the skin and rubbing the vaccine into the scratch.

The History of Vaccines – Smallpox to COVID-19

Stethoscopes displayed in the permanent Medical Sensations exhibition at the Canada Science and Technology Museum.

Curating sound culture: Exploring the history of the stethoscope

A close-up view of a radio pill a few moments before the first volunteer patient swallowed it. Anon., “Science – Radio Made to Swallow.” Life, 29 April 1957, 74.

Take one of these pills and your innards will call me in the morning: The digestive saga of… the radio pill

A text-based advertisement for Speton.

McGill-Ingenium Fellowship: Part Two - A Tale of Two Nations: Birth Control in India and Canada (1930–60s)

Autumn vista of a river winding between pine trees and snow-capped mountains.

AI-Generated sound therapy for critically ill patients

Aticle from an issue of Guna Sundari in 1936.

McGill-Ingenium Fellowship: Part One - A Historian & Her Archives

A spliced, three-part image depicts sugar beets and a pile of white sugar and sugar cubes, a view of a partially cloud-covered ocean taken from above the Earth, and a humanoid toy robot wearing a stethoscope.

3 things you should know about beets, satellites, and robotic surgery

A pancreas made of light floats between the hands of a woman wearing a white lab coat, a mask, and a stethoscope.

Innovation and the future of diabetes: A conversation with an entrepreneur and diabetes dad

Footer

About The Channel

The Channel

Contact Us

Ingenium
P.O. Box 9724, Station T
Ottawa ON K1G 5A3
Canada

613-991-3044
1-866-442-4416
contact@IngeniumCanada.org
  • Facebook
  • Instagram
  • Twitter
  • Channel

    • Channel Home
    • About the Channel
    • Content Partners
  • Visit

    • Online Resources for Science at Home
    • Canada Agriculture and Food Museum
    • Canada Aviation and Space Museum
    • Canada Science and Technology Museum
    • Ingenium Centre
  • Ingenium

    • Ingenium Home
    • About Ingenium
    • The Foundation
  • For Media

    • Newsroom
    • Awards

Connect with us

Subscribe to our newsletter to receive the latest Ingenium news straight to your inbox!

Sign Up

Legal Bits

Ingenium Privacy Statement

© 2023 Ingenium

Symbol of the Government of Canada
  • Browse
    • Categories
    • Media Types
    • Boards
    • Featured Stories
  • About
    • About The Channel
    • Content Partners