DIGITAL LITTERACY

Exploring Pattern Recognition
 Art and Binary Code

What is binary code?

Binary code uses only the digits " 0 " and 1 " instead of the usual 0 to 9 . Imagine a switch where 0 is on and 1 is off. Each 0 and 1 is a binary unit called a bit, from the contraction of "binary digit." Bits are grouped into groups of eight digits of 1 or 0 , called bytes. Computer transistors read billions of bytes, which are then translated by the processor and sent to the computer software to decode the instructions.

Number of bits	Number of possibilities	The possibilities written in binary code
1 bit	2	0 or 1
2 bits	$4\left(2^{2}\right)$	00, 01, 10 or 11
3 bits	$8\left(2^{3}\right)$	000, 001, 010, 011, 100, 101, 110 or 111
4 bits	16 (24)	$\begin{aligned} & \text { 0000, 0001, 0011, 0111, 1111, 0010, 0100, 1000, 0011, 0111, 1111, } \\ & 1001,1011,1010,0110 \text { or } 1110 \end{aligned}$
5 bits	$32\left(2^{5}\right)$	00000, 01000, 00100, 01100, 00010, 01010, 00110, 01110, 0000,11000, 0100, 11100, 10010, 11010, 0110, 11110, 00001, 01001, 00101, 01101, 0001, 01011, 00111, 01111, 10001, 11001, 10101, 11101, 10011, 11011, 10111 or 11111
6 bits	$64\left(2^{6}\right)$	Can you write down five possibilities?
7 bits	$128\left(2^{7}\right)$	Can you write down three possibilities?
$\begin{aligned} & 8 \text { bits } \\ & \text { (1 byte) } \end{aligned}$	$256\left(2^{8}\right)$	Can you write down two possibilities?

DIGITAL LITTERACY

Hidden Images Game

Instructions

1. Look at each line of code bytes. There are eight digits per line, so 256 possibilities.
2. Fill in/ only those boxes whose digit is represented by "1" in the column of the appropriate bit.

Bytes	Bit $\mathbf{1}$	Bit $\mathbf{2}$	Bit $\mathbf{3}$	Bit $\mathbf{4}$	Bit $\mathbf{5}$	Bit $\mathbf{6}$	Bit $\mathbf{7}$	Bit 8
00000000								
00100100								
00100100								
00000000								
01000010								
00100010								
00011000								
000000								

Crack the Code Game

Instructions

1. Complete the "bytes" column by entering the eight-digit binary code sequence for each line.

Bytes	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7	Bit 8

DIGITAL LITTERACY

Your turn!

1. Visualize a drawing in the grid.
2. Complete the "bytes" column by entering the eight-digit binary code sequence for each line of your drawing.
3. Ask a friend or relative to decode the drawing.

Bytes	Bit 1	Bit $\mathbf{2}$	Bit 3	Bit $\mathbf{4}$	Bit 5	Bit $\mathbf{6}$	Bit 7	Bit 8

